DCCP Written Reviewer Comments

Eddie Kohler
International Computer Science Institute
IETF 57 DCCP Meeting
July 16, 2003
Overall note

• I personally, and the authors in general, cannot thank the reviewers enough
Non-outstanding comments: Minshall

- Half-open connections
  - Tough problem, fixed
- Middlebox Considerations section too normative (also Rescorla)
  - Toned down language
- Ack Ratio dangerous
  - Made it explicitly more TCPlike (delayed ack timer)
- Many extremely useful comments
  - Fixed
Non-outstanding comments: Rescorla

- Requirements too weak (SHOULDs instead of MUSTs)
  Will add occasional text describing what will happen if you don’t do a SHOULD
- Presentation issues (documents hard to track)
  Fixes in progress
- Again, many extremely useful comments
Non-outstanding comments: Westerlund

- RTP sequence number interpolation a bad idea
  Removed

- Again, many extremely useful comments
Do we need multiple CCIDs? (Rescorla)

- Non-real-time traffic doesn't care (so just pick one); real-time traffic doesn't want congestion control, it wants congestion *indications*

- Authors believe multiple CCIDs essential

  Added use cases to drafts
Will CCID 1 be useful? (Minshall)

? Seems hard to provide the feedback required by a protocol you don’t understand. (Minshall)

• Ack Vector has stable semantics regardless of CCID

  All required congestion information is in Ack Vector
PAWS (Minshall)

- Sequence number space is too small
  - Tough problem
    - Security issue as well as classical PAWS old-segment issue
Non-recommended solutions to PAWS

0. Declare nonissue: DCCP only suitable for connections with congestion windows up to a couple hundred thousand packets
   Even those connections will have 2MSL problems

1. TCP-like Timestamp option
   Verbose and does not solve security problem

2. Globally extend sequence numbers to 48 bits
   Header becomes pointlessly verbose for vast majority of connections
Recommended solutions to PAWS

3. Add an alternate header format with long sequence numbers

   Want to differentiate formats with a header bit (middleboxes)—take a bit from Cslen? # NDP?
   Sequence numbers embedded in options?—Recommend that all options use deltas off the Sequence Number or Acknowledgement Number
   Cost: all sequence number calculations use the extended sequence number

4. Add options that extend the sequence numbers

5. Add an epoch option

   Sequence epoch and acknowledgement epoch, 24 bits each
   Reject packet if |cur-seq-epoch – last-seq-epoch| > 1 (and similarly for acknowledgement epoch)
Partial checksums (Minshall, Rescorla)

How useful are partial checksums actually going to be? Link layers will not deliver bad data.

- Positive experiences with delivery of corrupt packets on some link layers
- A lot like UDP-Lite
  - Only even more compelling because of congestion control
  - Wouldn't make sense to allow one but not the other
  - Will be discussed at IAB plenary
When is a packet received? (Minshall)

It is a mistake to define packet receipt as “options processed”. Should define it as “will make best effort to give data to application”. Congestion in the endpoint is still congestion.

- Authors all agree that it is essential to decouple non-network loss from network loss
  
  Cost of leaving them coupled is too high for high-volume flows
  
  Example: receive buffer drop on a 1 Gbps, 100ms RTT flow leads to 5 minutes of bad performance
  
  “Congestion control serves several separate functions: preventing congestion collapse; fairness with competing traffic; and optimizing performance for the individual flow.” [RFC 2914]

  A receive buffer drop is not causing congestion collapse and has no fairness implications; halving the congestion window pessimizes performance for the individual flow. This is not congestion
When is a packet received? (2)

• What does “will make best effort to give data to application” mean in the presence of unreliability?
  
  Applications will often want drop-from-head receive buffers to drop untimely data

• Passing acknowledgements to the application
  
  Avoid duplicating acknowledgement information at app level
  
  App wants to know if something was really delivered, “best effort” insufficient

• This is a tradeoff: complexity vs. performance
  
  Complexity: report different kinds of drops
  
  Performance: avoid congestion response to non-congestion loss
  
  We believe the tradeoff is clear
The Data Dropped option (Minshall)

? However you define packet receipt, the Data Dropped option is a bad way to signal receive buffer loss and/or that the app is no longer listening.

• Seems clean to us

  Ack Vector: Which packets were delivered to DCCP?
  Data Dropped: Which packets were delivered to the application?

• Alternatives: Receive window?

  Not clear how to define for an unreliable protocol
  Not useful for applications

• Report a count of receive buffer drops?

  ECNNonce verification, bad match with apps
Data Dropped possible alternative

- Reduce Data Dropped to two Drop Codes, “delivered” or “not delivered”

  Currently 6 code points:
  - delivered
  - dropped: protocol constraints
  - dropped: receive buffer loss
  - delivered but corrupt
  - dropped: app not listening
  - dropped: corrupt

- Not clear how much complexity you lose

  Still need different responses to “app not listening”, “corrupt”; would have to add separate options

- Author consensus: keep Data Dropped
Mobility (Rescorla)

Why include it? Belongs at the IP layer.

- Depends on how important you think it will be for devices to change providers (cell phone to WiFi?)
  - Mobile IP might not be there
  - DCCP might be able to do better than Mobile IP
- Not clear agreement
Mobility (Westerlund)

What if the moving endpoint was behind a NAT? (Old Address, Old Port will be wrong.)

- Possible solutions
  - Mobility ID (extend Mobility Capable to an ID?) instead of Old Address and Old Port
  - Don’t move from behind a NAT
  - Drop mobility

- Again, authors +0.1 on mobility
Underspecification (all)

? Is it safe to silently track changes in other specs?

From CCID 2: “Conformant CCID 2 implementations MAY track TCP’s evolution directly, as updates are standardized in the IETF, rather than waiting for revisions of this document.”

• Probably need to specify exactly what changes may be tracked

? Timeout processes are not specified, or are specified by reference to TCP. The feature negotiation diagrams are ambiguous. CCID 3 Loss Event Rate calculation specified by reference. . . .

• Need at least to add more language

Don't want to overspecify timeouts in particular
Security (Rescorla)

Sequence number security is depressing. Replace checksum with a MAC keyed by Connection Nonce?

- Key question: transport security vs. app or network-level security
- Tradeoff: incremental security vs. middlebox friendliness

Not clear how much security gained by assuming attacker can see packets now, but couldn't at connection startup
Optional ECN? (Minshall)

Why make ECN optional? Middlebox traversal not a good argument.

- An endpoint that doesn't want to verify ECN Nonces should turn off ECN capability
- Authors don't feel too strongly about this issue
Small fields (all)

? Reset Reasons and Service Names are too small, strings should be a possibility. (Rescorla)

• Sense of the room?

? Want an extension mechanism for things like options and Reset Reasons, with a way of knowing what can be ignored if not understood. (Minshall)

• Case-by-case?

  For example, Ignored sufficient for options?

? How are Service Names allocated? (Westerlund, Rescorla)

• Current text more explicit, refer to recent email
Complexity

- Most complexity derives from in-band signalling
  - Connection setup and teardown
  - Feature negotiation
  - Reliable transmission ofacks
- Alternative: Assume a signalling channel
  - Unfriendly to middleboxes
  - Unfriendly to applications
  - Just moves complexity, doesn’t remove it (?)
  - But the data-carrying protocol would look much simpler
## Authors’ feature prioritization

<table>
<thead>
<tr>
<th>Feature</th>
<th>E</th>
<th>E</th>
<th>E</th>
<th>E</th>
<th>H</th>
<th>High priority</th>
<th>M</th>
<th>Medium priority</th>
<th>L</th>
<th>Low priority</th>
<th>–</th>
<th>Don’t care</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP-like CCID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td>Essential</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TFRC CCID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td>High priority</td>
<td>M</td>
<td>Medium priority</td>
<td>L</td>
<td>Low priority</td>
<td>–</td>
<td>Don’t care</td>
</tr>
<tr>
<td>ECN nonce</td>
<td></td>
</tr>
<tr>
<td>current Ack Vector format</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td>High priority</td>
<td>M</td>
<td>Medium priority</td>
<td>L</td>
<td>Low priority</td>
<td>–</td>
<td>Don’t care</td>
</tr>
<tr>
<td>optional Ack Vector</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td>High priority</td>
<td>M</td>
<td>Medium priority</td>
<td>L</td>
<td>Low priority</td>
<td>–</td>
<td>Don’t care</td>
</tr>
<tr>
<td>current Data Dropped</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td>High priority</td>
<td>M</td>
<td>Medium priority</td>
<td>L</td>
<td>Low priority</td>
<td>–</td>
<td>Don’t care</td>
</tr>
<tr>
<td>DataAck piggybacking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td>High priority</td>
<td>M</td>
<td>Medium priority</td>
<td>L</td>
<td>Low priority</td>
<td>–</td>
<td>Don’t care</td>
</tr>
<tr>
<td>different CCIDs on HCs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
<td>Medium priority</td>
<td>L</td>
<td>Low priority</td>
<td>–</td>
<td>Don’t care</td>
<td></td>
<td></td>
</tr>
<tr>
<td>partial checksums</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
<td>Medium priority</td>
<td>L</td>
<td>Low priority</td>
<td>–</td>
<td>Don’t care</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ack congestion control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
<td>Medium priority</td>
<td>L</td>
<td>Low priority</td>
<td>–</td>
<td>Don’t care</td>
<td></td>
<td></td>
</tr>
<tr>
<td>quiescence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
<td>Medium priority</td>
<td>L</td>
<td>Low priority</td>
<td>–</td>
<td>Don’t care</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCval</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
<td>Medium priority</td>
<td>L</td>
<td>Low priority</td>
<td>–</td>
<td>Don’t care</td>
<td></td>
<td></td>
</tr>
<tr>
<td># NDP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>–</td>
<td>High priority</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>optional ECN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>Low priority</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>mobility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>–</td>
<td>Low priority</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>