DCCP Spec Updates

* * *

[Eddie Kohler, Mark Handley]
UCLA
IETF 59 DCCP Meeting
March 4, 2004
Overview

- Spec looks more different than it is
 - Organizational changes
 - Cleanups from reviewers
- Technical updates
 - Event processing
 - Simplifications discussed in Minneapolis
 - Most significant changes mentioned on mailing list
Organizational Changes

• Rewrote initial material

• Reorganized text
 Moved specifics of packet processing, validation, etc, out of Header Processing into new sections

• Changed option names, and in some cases semantics, to improve understandability

• Clearer examples

• New (non-normative) state transition diagram
Event processing

- Added event processing pseudocode
- Specific processing steps for all events
- Improved state diagram

 Added PARTOPEN state: after receiving Response, client must send acknos on all packets until hearing from server
- Checked it out with a finite state model and an exhaustive state walk
Event processing pseudocode

Eighth, check sequence numbers;
 If S.SWL <= P.seqno <= S.SWH
 && (P.ackno does not exist || S.AWL <= P.ackno <= S.AWH),
 Update S.GSR, S.GAR, S.SWL, S.SWH
 Otherwise,
 Send Sync packet acknowledging P.seqno
 Drop packet and return

Ninth, check packet type;
 If (S.is_server && P.type == CloseReq)
 || (S.is_server && P.type == Response)
 || (S.is_client && P.type == Request)
 || (S.state >= OPEN && P.type == Request && P.seqno >= S.OSR)
 || (S.state >= OPEN && P.type == Response && P.seqno >= S.OSR)
 || (S.state == RESPOND && P.type == Data),
 Send Sync packet acknowledging P.seqno
 Drop packet and return

Tenth, process options;
/* may involve resetting connection, etc. */
 Mark packet as ‘‘received’’ for acknowledgement purposes
 On processing Confirm R(Mobility ID),
 Check that the confirmed Mobility ID is correct
 If a DCCP-Move was recently processed,
 Remove any old Mobility ID from table

...
Sequence number validity

* Cleaner rules depend only on packet type (not connection state)
* Previously a DCCP-Sync elicited a DCCP-Sync

 Not convinced a Sync storm couldn’t happen.

 Add DCCP-SyncAck packet type to avoid possible problems.
* Added section calculating probability of successful sequence number guessing attacks.

 Suggest using extended sequence numbers if window is greater than 100 packets.
Sequence number validity

<table>
<thead>
<tr>
<th>Packet Type</th>
<th>Sequence Number Check</th>
<th>Acknowledgement Number Check</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCCP-Request</td>
<td>SWL \leq seqno \leq SWH (*)</td>
<td>N/A</td>
</tr>
<tr>
<td>DCCP-Response</td>
<td>SWL \leq seqno \leq SWH (*)</td>
<td>AWL \leq ackno \leq AWH</td>
</tr>
<tr>
<td>DCCP-Data</td>
<td>SWL \leq seqno \leq SWH</td>
<td>N/A</td>
</tr>
<tr>
<td>DCCP-Ack</td>
<td>SWL \leq seqno \leq SWH</td>
<td>AWL \leq ackno \leq AWH</td>
</tr>
<tr>
<td>DCCP-DataAck</td>
<td>SWL \leq seqno \leq SWH</td>
<td>AWL \leq ackno \leq AWH</td>
</tr>
<tr>
<td>DCCP-CloseReq</td>
<td>SWL \leq seqno \leq SWH</td>
<td>AWL \leq ackno \leq AWH</td>
</tr>
<tr>
<td>DCCP-Close</td>
<td>SWL \leq seqno \leq SWH</td>
<td>AWL \leq ackno \leq AWH</td>
</tr>
<tr>
<td>DCCP-Reset</td>
<td>seqno \geq 0 or seqno $>$ GSR</td>
<td>GAR \leq ackno \leq AWH</td>
</tr>
<tr>
<td>DCCP-Move</td>
<td>seqno $>$= SWL</td>
<td>ISS \leq ackno \leq AWH</td>
</tr>
<tr>
<td>DCCP-Sync</td>
<td>seqno $>$= SWL</td>
<td>AWL \leq ackno \leq AWH</td>
</tr>
<tr>
<td>DCCP-SyncAck</td>
<td>seqno $>$= SWL</td>
<td>AWL \leq ackno \leq AWH</td>
</tr>
</tbody>
</table>

- In general, packets are sequence-valid if their Sequence and Acknowledgement Numbers lie within the corresponding valid windows, [SWL, SWH] and [AWL, AWH].
Forward compatibility

* *

● Added Forward Compatibility section

 Describes how features should be defined to facilitate forward and backward compatibility

 1: Use a feature to negotiate the use of an extension, default is “No”

 2: Don’t reset odd options or features

● Ignored option proved non-useful, so removed it

● Some existing features were rewritten so they act like extensions:

 Sequence number transition

 Check Data Checksum, . . .

● Also reserve some options and features for experimental use
Feature negotiation

- Added empty Change option
 “What’s your current value for this feature?”
- Add empty Confirm option
 “I didn’t understand your Change option”
- Both make the protocol more explicit
- Simplified state diagram
 Remove FAILED state—no need to support it if features are implemented as suggested in “Forward compatibility”
Update on open issues from IETF 58

* *

- # NDP

 Removed in favor of NDP Count option

- Identification and Challenge

 Removed in favor of DCCP-Sync and DCCP-SyncAck

- Data Dropped requirements in CCID 3

 Problem is receiver (as opposed to network) congestion

 CCID 3 draft now suggests manipulating X_{recv} to indirectly limit the transmit rate.
Update on open issues 2

* *

- Packet sizes
 "CCID x implementations MAY check for applications that appear to be manipulating the packet size inappropriately."

- Payload Checksum
 Use SCTP’s CRC-32c

- Service Code Wildcarding
 Previously allowed DCCP-Request and/or listening socket to wildcard the service code.
 Potential security confusion.
 Dropped wildcarding, echo service code in DCCP-Response
CCID 2 and 3

* *

- No other significant changes
So where are we?

* *

- Rev documents, suggest real WG last call immediately after IETF
- Onward and upward
Future Work

- Faster recovery after idle.
- CCID for TFRC-PS
 - TFRC-PS needs doing in TSVWG
- Fixed rate apps.
Faster recovery after idle

- Open issue as to what the bad consequences are from not slow-starting when a session becomes active again after an idle period.
TFRC-PS

- TFRC is designed for applications that change their sending rate by varying the number of packets sent per second.

 Audio applications generally want to send a constant rate of packets/second, and change the compression of each of those packets.

- Research is still needed as to how to modify TFRC to do this safely.

 Depending on this research, we need to create a new CCID for TFRC-PS.
Fixed rate applications

* *

- DCCP as currently written assumes data will be transmitted at the congestion-controlled rate.

 Some applications are inherently fixed rate.

 Some applications have a number of fixed rates they can switch between.

- It should be possible to use TFRC to provide a reference rate.

 DCCP would tell the application the reference rate, and police the application only if went outside a fairly wide band centered on the reference rate.

 Perhaps: \(0.5X_{\text{reference}} < X_{\text{app}} < 2X_{\text{reference}}\)

 May be issues when few flows stat-muxing - need research.